Robustness of Structures
COST Action TU0601

1STWORKSHOP

February 4-5, 2008, ETH Zurich, Switzerland

Draft Guideline to satisfy Robustness prescriptions in Structural Codes

Pietro Baratono – Fabio Casciati
Works, Regulations and Products

Rules on Works
MS Competence

Rules on Products
Competence both of EC and MS

Different regulatory systems in Europe.
Performance-based or prescriptive regulations
Sometimes regulations on works and products are in the same provision
(Italian Decree 14.9.05)
Construction Controls Regimes have several sub-systems among EU

- Different Planning and building regulations prescriptive v. performance based
- design codes (Eurocodes implemented differently through MS), approved documents, technical guides
- product standards and/or approvals
- permits and planning control
- inspection systems
- technical control / insurance
- supervision of works: architect/ engineer/ PS
- liability and insurance

Robustness provisions should consider the different regulations among MS and try to unify the approach
Provisions in regulations should be given with a performance-based approach.
Technical Specifications

MANDATORY

Directives

Laws, Decrees

EUROCODES

VOLUNTARY

Enforced

EUROCODES

Mandate

Ministero delle Infrastrutture
Robustness provisions

Italian Code DM 2005
Italian DM 2005

- Introduction of a design lifetime
- Introduction of different return periods for the environment actions as consistent with the design lifetime (different from EC)
- Introduction of a cost-benefit analysis in selecting the safety target levels
- Introduction of robustness analysis
Tab. 2.5.I - Useful design life of various types of structures

<table>
<thead>
<tr>
<th>USEFUL DESIGN LIFE (years)</th>
<th>TYPE OF STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Temporary structures – Structures at the construction stage</td>
</tr>
<tr>
<td>≥ 10</td>
<td>Replaceable structural components (joints, bearings, etc.)</td>
</tr>
<tr>
<td>50</td>
<td>Class 1 structures</td>
</tr>
<tr>
<td>100</td>
<td>Class 2 structures</td>
</tr>
</tbody>
</table>

The Client and the Designer, must jointly declare the useful life of the structure in the design.
Classes of Importance

Structures are divided into two importance classes defined as follows:

- **Class 1**: useful life of 50 years, return period to consider for the natural phenomena involved of 500 years. This class shall include structures whose normal use anticipates crowds, which have no contents hazardous to the environment, and which have no essential public and social functions, industries with non-dangerous activities and road and railway networks whose blockage will not cause emergency situations.

- **Class 2**: useful life of 100 years, return period to consider for the natural phenomena involved of 1000 years. This class shall include buildings whose normal use anticipates significant crowds, industries with activities hazardous to the environment, road and railway networks whose blockage will cause emergency situations and structures with public or important strategic functions, or essential social functions.

The decision of which class to assign to a structure shall be made by the Client in conjunction with the Designer, according to the guidelines provided by this regulation, and it must be clearly stated in the design.
RELIABILITY LEVELS

<table>
<thead>
<tr>
<th>Relative cost of safety improvement measures</th>
<th>CLASS 1</th>
<th>CLASS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>$P_e \leq 1 \times 10^{-4}$</td>
<td>$P_e \leq 1 \times 10^{-5}$</td>
</tr>
<tr>
<td>Low</td>
<td>$P_e \leq 1 \times 10^{-5}$</td>
<td>$P_e \leq 1 \times 10^{-6}$</td>
</tr>
</tbody>
</table>
In particular, according to the provisions of the specific rules for the various structural types, structures and structural elements must meet the following requirements:

- safety with regard to ultimate limit states (ULS): collapses, loss of equilibrium and serious total or partial instability which may endanger persons or result in the loss of goods, or cause serious environmental and social harm, or put the structure out of service;

- safety with regard to serviceability limit states (SLS): all the requirements which can guarantee the performance levels laid down for the operating conditions;

- robustness with regard to accidental actions: the ability to avoid damage disproportionate to the scale of the triggering cause such as a fire, explosion, impact or the consequences of human error.
Proposal Draft Guidelines to Satisfy the Robustness Prescriptions in Structural Codes
Failure are mostly due to:

- **Human Errors**: Main cause (construction), more than 90% with expected actions.
- **Design Errors**: Load models unforeseen actions (fire, explosions), structural properties, over strong materials.
- **Materials & Products**: Not fit for use, misuse of the intended-use (not reliable).
- **Material Degradation**: Not durable, loss of maintenance.

Structures shall be robust, reliable and durable → Need of a Quantification procedures of those performances.
Robustness: some basic concepts

- **Vulnerability**: estimate of the consequences of an initiating event.
- **Risk assessment** requires a probabilistic model for the initiating event (hazard analysis) \[\text{Risk} = \text{Hazard} \times \text{Vulnerability} \]
- When the latter is lacking, one proceeds by an analysis of **sensitivity** to perturbations: ROBUSTNESS
Need of Classes

- Introduction of classes in regulations is needed
 - To create a frame where public Authorities can operate (financing, controls, permits…)
 - To allow simplified approaches in case of low storey buildings
 - For safety reasons in case of public infrastructures (schools, strategic buildings, hospitals…)
- The design approach depends on classes
- Prescriptions for robustness depends on classes to optimize the designer’s effort
INTRODUCTION OF CLASSES

<table>
<thead>
<tr>
<th>CLASS OF WORK</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Structures in which persons are only occasionally present, agricultural buildings.</td>
</tr>
<tr>
<td>II</td>
<td>Structures, the use of which provides for normal crowding, without environmentally hazardous contents and without essential public and social functions. Industries performing non-environmentally hazardous activities. Civil works not falling within Class III or IV, rail networks, the interruption of which does not cause emergency situations. Dams, the collapse of which does not give rise to significant consequences.</td>
</tr>
<tr>
<td>III</td>
<td>Structures, the use of which provides for significant crowding. Industries performing environmentally hazardous activities. Non-urban road networks not falling within Class of use IV. Bridges and rail networks, the interruption of which causes emergency situations. Dams, the potential collapse of which gives rise to significant consequences.</td>
</tr>
<tr>
<td>IV</td>
<td>Structures with public functions or strategically important structures, including with reference to civil protection management in case of disaster. Industries performing activities that are particularly hazardous for the environment. Principal road networks. Bridges and rail networks of are critical importance for maintaining communication routes. Dams connected with the functioning of aqueducts and of electricity generating plants.</td>
</tr>
</tbody>
</table>
Allowable Individual Risk in Codes

<table>
<thead>
<tr>
<th>Works ULS Class</th>
<th>Allowable Individual Risk (AIR) YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^{(1)})</td>
<td>10(^{-4})</td>
</tr>
<tr>
<td>2(^{(1)})</td>
<td>10(^{-5})</td>
</tr>
<tr>
<td>3</td>
<td>10(^{-6})</td>
</tr>
<tr>
<td>4</td>
<td>10(^{-7})</td>
</tr>
<tr>
<td>Railway tunnels (DM 05)</td>
<td>10(^{-9})</td>
</tr>
</tbody>
</table>

\(^{(1)}\) A risk analysis for Class 1 or 2 works is only theoretical

\(^{(2)}\) The allowable risk could also be function of the relative cost of safety measures and/or consequence classes

Risk = Hazard x Vulnerability < AIR
<table>
<thead>
<tr>
<th>ACTIONS IMPOSED</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Fraction of vertical loads (Height<100 m) (interpolate between 100 and 200m)</td>
<td>-</td>
</tr>
<tr>
<td>Fraction of vertical loads (Height>200 m)</td>
<td>-</td>
</tr>
<tr>
<td>Absence of structural members</td>
<td>NO</td>
</tr>
<tr>
<td>Localized load on floors and walls</td>
<td>2kN</td>
</tr>
<tr>
<td>Redundancy</td>
<td>-</td>
</tr>
<tr>
<td>Explosion scenario or other complex scenarios</td>
<td>If required Static equivalent analysis</td>
</tr>
</tbody>
</table>
ROBUSTNESS
Vs
PRODUCTS AND MATERIALS
Robustness is
Linked to

“Quality”
Constant production, qualified FPC Certification (CPD)

Reliability
Small variation coefficients of technical characteristics, low percent defective, brittleness, fitness for use

Durability
Maintenance of the performances during WL, when normal maintenance is granted

Ministero delle Infrastrutture
Reliability is Linked to

Product Properties
- Unchanged over a temperature range i.e. (-20° +60°)

Variation Coefficient
- Less than i.e. (0,30)

Production defects
- Less than 5%

Brittleness
- Brittle behaviour shall be highlighted through testing

(1) Unless differently stated in ENh, ETAs or other technical specifications

Ministero delle Infrastrutture
DURABILITY OF PERFORMANCE

Performance level

FAILURE

REQUIRED LIFE TIME

REQUIRED PERFORMANCE

TIME MEASURE / USE MEASURE
Table 2: Relation between working life and works/products

<table>
<thead>
<tr>
<th>Assumed working life of works (years)</th>
<th>Working life of construction products to be assumed in ETAGs, ETAs and hENs (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Category</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Short</td>
<td>10</td>
</tr>
<tr>
<td>Medium</td>
<td>25</td>
</tr>
<tr>
<td>Normal</td>
<td>50</td>
</tr>
<tr>
<td>Long</td>
<td>100</td>
</tr>
</tbody>
</table>

¹ In exceptional and justified cases, e.g. for certain repair products, a working life of 3 to 6 years may be envisage (when agreed by EOTA TB or CEN respectively)
² When not reparaible or replaceable “easily” or with “some more efforts”.
Thank you for your patience!