COST 601: Robustness of Structures

Working Group 3

Activity 6: Measures to Improve Robustness Activity 7: Representation of Consequences Activity 8: Case Studies

Presentation by M K Chryssanthopoulos, Coimbra, March 2009

Assessment of Robustness

WG3

- Event / Scenario Modelling
- Structural Vulnerability
- Consequence Analysis

• Decision-making

•

WG3: Scope of Work

- State-of-practice guidance
 - Buildings
 - Bridges
 - Offshore
 - Tunnels
- Towards risk-based robustness
 - Consequence Modelling
 - Mitigation Measures
- Case studies

- In relation to triggering event
 - Direct (confined to local damage)
 - Indirect (escalating due to progressive collapse)
- In relation to type/nature
 - Human fatalities / injuries
 - Structural loss
 - Environmental impact
 - Functional loss / Downtime
 - Loss of reputation

- In relation to time frame
 - Short-term (during the event)
 - Long-term (for how many years?)
- In relation to system boundaries
 - Structural System
 - Network
 - Societal system (structure +network+...)

- Methodology for direct consequences
 - Analysis of past failures
 - Engineering judgement
- Methodology for indirect consequences
 - Limited experience
 - Subjectivity / Perception
 - How large is the system?
 - How long is the time frame?

Collapse of I35-W

- Built in 1964 at a cost of ~\$5.2m
- ADT 140,000, ~5,700 commercial vehicles
- About 330m of its span collapsed on 01/08/2007, all within few seconds
- At the time, undergoing repair work, including replacement of top 2" of concrete deck
- Causes of collapse:
 - design error in gusset plate dimensions
 - weight increases due to modifications
 - distribution of traffic and concentrated construction load

Consequences

- 13 deaths, 145 injuries
- Closure of main road artery
- Cost of replacement
- Cost of detours

.

- Loss to regional economy
- Environmental impact
- Impact on professional practice
- Effect on public confidence


Replacement project

- Completed 18/09/08, ~60 wks after collapse
- Two concrete bridges side-by-side
- "New bridge provides superior durability which contributes to multiple levels of redundancy. Concrete has lower maintenance costs than other materials, which will add up over the bridge's expected lifespan of a century"
- Cost of ~\$234m

Regional impact

- Regional econometric model using MnDoT data on ADT and vehicle mix
- Both direct and indirect or 'spin-off'
 costs considered
- Detours \$400,000 per day, estimated at ~\$120m over 60 wks
- Reduction of state's economic output estimated at 0.01% pa, ~\$60m until replacement
- Job losses?
- Emissions?

Impact on professional practice

- Insufficient quality control procedures
 - new checks and verifications introduced in design
- Lack of guidance with regard to placement of construction loads during maintenance and repair
 - new guidelines to be drafted and followed
- Inadequate use of inspection technology for gussets in fracture critical bridges
 - revision of inspection manuals
- Additional assessment checks for all non-load-pathredundant steel truss bridges
 - more lengthy / complex assessments
- Cost over entire US network, say in next 10 years??

Public confidence

- Risk perception: need to re-assure public
 MnDot: *"structural integrity is paramount"*
- Acceleration of rehabilitation of 'similar' bridges
- Reduced priority for other measures:
 - Crash protection
 - Highway improvements
- Cost of upgrading US network estimated at \$140bn how much is expedited as a result of I35W collapse?
- Additionally, what is the cost incurred from NOT undertaking other measures?
- Cost over entire US network, say in next 10 years??

I35-W Summary

Casualties:	Deaths & Injuries
 Cost of replacement: 	~\$234m
 Cost of detours: 	~\$120m
 Regional economic cost: 	~\$60m
 Cost from changes in professional prac 	tice, ??
 Cost from accelerated rehabilitation, 	??
 Cost from not doing other things as a re 	esult, ??

- In addition:
 - Increased environmental impact, emissions?
 - Job losses, permanent economic damage
 - Loss of reputation, cost of fearing the next accident...

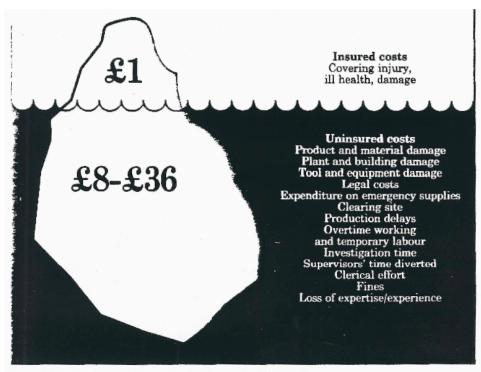


Figure 12 Accident iceberg - the hidden cost of accidents

Iceberg concept

Magnitude of 'hidden losses' far exceeds the insured costs

- Change in societal trends:
 - Population growth, urbanisation
 - Network density / intensity / inter-dependency
 - Economic factors: supply chains, pace of development, …
 - Perception: risk-averse society
 - Insurance and litigation
- Change in exposure factors
 - Global warming
 - Population resilience

Measures to Improve Robustness

- Resist
- Avoid
- Protect
- Sacrifice

• Ties

- Compartmentalisation
- Notional Loads
- Key elements
- Ductile connections
- Catenary action
- Fuses

Structural

Measures

Element removal

Measures to Improve Robustness

- Avoid
- Protect
- Sacrifice

Functional

Measures

- Alarms
- Warning sensors
- Barriers

National Initiatives

- UK Institution of Structural Engineers: Practical Guide to Structural Robustness and Disproportionate Collapse in Buildings
 - Class 1 to 2B buildings
 - Principles and Definitions of Robustness
 - Prescriptive Measures for each main construction form/material
 - No coverage of Class 3 (>15 storeys or high importance): quantitative risk assessment
 - Expected completion 2009

WG3: Proposed Work

- Develop case studies and a position paper on consequence modelling for risk-based robustness assessment
- Review robustness requirements / criteria in existing codes, regulations and best-practice documents for different structural systems (buildings, bridges,...)
- Matrix of improvement / mitigation measures based on a generic classification (R-A-P-S)* and practical measures given in state-of-practice guidance documents

* Resist-Avoid-Protect-Sacrifice

WG3: Proposed Work

- Robustness requirements / criteria in codes, regulations and bestpractice documents [Diamantidis, Casciati/Baratono, Chryssanthopoulos]
- Consequence modelling:
 - Analysis of damages/consequences in selected mid-rise buildings through EQ databases; identification and categorisation of positive and negative features; emphasis on public buildings [Inel, Agarwal]
 - Analysis of consequences from bridge failures [Imam, Neves, Chryssanthopoulos]
- Improvement of Robustness through monitoring and smart materials/devices [Casciati, Faravelli]
- Contribution to the benchmarking example defined by WG2 [?,?]
- Avoid duplication of effort information exchange with C26