COST Action TU0601 Robustness of Structures 2-3 March 2009, Coimbra

Evaluation of Robustness of Structures – A Comparative Study

Harikrishna Narasimhan Luca Garrè Michael Faber

Objective of Study

- Investigation of different design approaches for a considered truss structure.
- Evaluation of robustness based on different indicators obtained from literature.

Methodology of Study

- Three design approaches considered:
 - Code based design using the Eurocode approach.
 - System reliability based design based on a requirement for system reliability.
 - Risk based design explicitly taking into account the consequences of failure.
- Design optimization for commercially available sections to minimize material volume carried out.

Methodology of Study

Evaluation of robustness carried out based on the following indicators:

Index of robustness

Baker, J.W., M. Schubert, and M.H. Faber (2008), "On the assessment of robustness," *Structural Safety*, **30**(3), 253-267.

Vulnerability

Lind, N.C. (1995), "A measure of vulnerability and damage tolerance," *Reliability Engineering and System Safety*, **48**(1), 1–6.

Redundancy index

Fu, G. and D.M. Frangopol (1990), "Balancing weight, system reliability and redundancy in a multiobjective optimization framework," *Structural Safety*, **7**(2-4), pp. 165–175.

Design Optimization

Code based design

Object function:
$$\underset{\mathbf{a}}{\operatorname{arg min}}(C \ (\mathbf{a}))$$

where:

$$C(\mathbf{a}) = \sum_{i=1}^{n_m} l_i a_i c$$

 $n_m = number of members$

 l_i = length of member

 a_i = cross sectional area of member

c = costs per unit volume of material

Design Optimization

System reliability based design

Object function:
$$\underset{\mathbf{a}}{\operatorname{arg min}}(C \ (\mathbf{a}))$$

Constraint:
$$p_f^{system} \le 10^{-4} pa$$

Design Optimization

Risk based design

Object function: $\underset{\mathbf{a}}{\operatorname{arg min}}(C_{LS}(\mathbf{a}, T))$

where:

$$C_{LS}(\mathbf{a},T) = \sum_{i=1}^{n_m} l_i a_i c + E[C_F(\mathbf{a},T)]$$

 $E[C_F(\mathbf{a},T)]$ = expected value of discounted costs due to failure of system as well as failure of individual members over the life time T of the structure

Modelling of Loads, Resistances and **Properties**

Variable	Distribution Type	Mean μ	Standard Deviation σ
Load R	Gumbel	μ_R = 24 [KN]	$\sigma_R = 0.2 \mu_L [KN]$
Yielding stress σ_y	LogNormal	μ _y = 250 [MPa]	$\sigma_y = 0.07 \mu_y [MPa]$
Young's Modulus ${\it E}$	Deterministic	200000 [Mpa]	I
Section properties thickness t width w	Normal Normal	$\mu_t = t_{nom} [mm]$ $\mu_w = w_{nom} + Uni(-1,1) [mm]$	$\sigma_{t} = 0.04 \mu_{t} [mm]$ $\sigma_{w} = Uni(0,1) [mm]$
Length of outer element	Deterministic	3 [m]	_
Length of brace element	Deterministic	4.24 [m]	_

Evaluation of Component Reliability

Limit states for component reliability assessment based on yielding and buckling criteria.

Yielding

$$M_y = \sigma_y A_i - R_i$$

Buckling

$$M_B = \pi^2 E I_i / (I_i)^2 - R_i$$

where:

R_i = calculated axial load on member I_i = moment of inertia of member

- System failure defined as the formation of a mechanism in the structure.
- Direct consequences associated with failure of individual components represented by material and component replacement costs.
- Indirect consequences associated with failure of entire structure represented as a multiple of direct consequences.

Results from Design Optimization

Optimal Section				
Approach	Cross-sections of brace elements [all in mm]	Cross-sections of outer elements [all in mm]	Initial Cost (Euros)	System probability of failure
Code based design	60 x 60 x 3	50 x 50 x 2	425	1.25·10 ⁻⁴
System reliability based design	70 x 70 x 3	50 x 50 x 2	465	3.4·10 ⁻⁵
Risk based design (for very high indirect consequences)	70 x 70 x 3	60 x 60 x 2	505	1.2·10 ⁻⁵

Index of robustness (I_{Rob})

Baker, J.W., M. Schubert, and M.H. Faber (2008), "On the assessment of robustness," *Structural Safety*, **30**(3), 253-267.

$$I_{Rob} = \frac{Direct \ Risk}{Direct \ Risk + Indirect \ Risk}$$

Index of robustness (I_{Rob})

	Index of Robustness		
Ratio of Indirect to Direct	Code based design	System reliability based design	design
Consequences	60 x 60 x 3 50 x 50 x 2	70 x 70 x 3 50 x 50 x 2	70 x 70 x 3 60 x 60 x 2
5	0.796	0.731	0.551
10	0.280	0.617	0.499
20	0.197	0.460	0.366
40	0.135	0.305	0.252
80	0.093	0.194	0.202
100	0.058	0.121	0.143

Vulnerability (V)

Lind, N.C. (1995), "A measure of vulnerability and damage tolerance," *Reliability Engineering and System Safety*, **48**(1), 1–6.

$$V = V(r_d, S) = P(r_d, S) / P(r_0, S)$$

where:

S = loading P(r, S) = probability of system failure in state r for loading S r_0 = pristine state of system r_d = damaged state of system

Vulnerability (V)

- Dominant damage states considered:
 - Buckling failure of outer element
 - Buckling failure of brace element
- Probabilities of system failure given occurrence of damage states weighted with probabilities of damage states to obtain vulnerability.

	Vulnerability		
	Code based design	System reliability based design	Risk based design
	60 x 60 x 3	70 x 70 x 3	70 x 70 x 3
	50 x 50 x 2	50 x 50 x 2	60 x 60 x 2
Vulnerability	3.572	2.947	3.459

Redundancy index (RI)

Fu, G. and D.M. Frangopol (1990), "Balancing weight, system reliability and redundancy in a multiobjective optimization framework," *Structural Safety*, **7**(2-4), pp. 165–175.

$$RI = \frac{P_{f(dmg)} - P_{f(sys)}}{P_{f(sys)}}$$

where:

 $P_{f(dmg)}$

probability of component

failure

 $P_{f(sys)}$

probability of system failure

Redundancy index (RI)

- Dominant damage states considered:
 - Buckling failure of outer element
 - Buckling failure of brace element

	Redundancy Index		
Damage state	Code based design	System reliability based design	Risk based design
	60 x 60 x 3	70 x 70 x 3	70 x 70 x 3
	50 x 50 x 2	50 x 50 x 2	60 x 60 x 2
Buckling failure of			
outer element	0.21	3.29	1.88
Buckling failure of			
brace element	0.96	1.79	3.04

Conclusion

- An evaluation of robustness based on different indicators obtained from literature has been presented.
- The vulnerability and redundancy measures consider robustness to be a measure concerning only the structure and depend on relative values of damage and failure probabilities.
- The study provides an indication of situations where consequences need to be considered in a risk based framework.