WG 2: Exposures and Vulnerability

activity 4: exposure scenario models activity 5: structural behaviour models

ton vrouwenvelder

tno/tu-delft, the netherlands

Risk based Robustness

Step 1

Step 2

Identifical and modelling of relevant accidental hazards Assessment of damage states to structure from different hazards Step 3

Assessment of the performance of the damaged structure

Assessment of the probability of occurence of different hazards with different intensities Assessment of the probability of different states of damage and corresponding consequences for given hazards Assessment of the probability of inadequate performance(s) of the damaged structure together with the corresponding consequence(s)

 $Risk = p(H_i)p(D_j|H_i)p(S_k|D_j)C(S_k)$

Model = physics + statistics

Activity 4: Exposure scenarios

Key words:

* normal loads

* accidental loads

human actions

human errors

* unforeseeable actions

Activity 4: Exposure scenarios

Documents

- Probabilistic modeling of exposure conditions
- Modeling of human errors
- Modeling of explosions
- JCSS Model Code (normal loads, fire, impact, earth quake)
- List of reference documents (collapse data/human error)

Activity 4: Exposure scenarios

unforeseeable (objectively unknown)

 foreseeable not recognised ignored considered, but incorrectly considered correctly

foreseeable actions:

Accidental /natural	Accidental/manmade	Human influences	Normal loads	Human Errors
			(including the	
			tail values)	
Earthquake	Internal explosion	Vandalism	self weight	Design error
Landslide	External explosion	Demonstrations	imposed loads	Material error
Tornado	Internal fire	Terrorist attack	car park loads	Construction error
Avalanche	External fire		traffic	Misuse
Rock fall	Impact by vehicle etc		snow	Lack of maintenance
High groundwater	Mining subsidence		wind	Miscommunication.
Flood	Environmental attack		hydraulic	
Volcano eruption				

<u>JCSS</u> Probabilistic Model Code

1 Basis of Design 2 Loads Models 3 Resistance

2.0	General	
2.1	Self weight	
2.2	Live load	
2.3	Industrial storage	
2.4	Cranes	
2.5	Traffic	
2.6	Car parks	
2.7	Silo load	
2.8	Liquids/gasses	
2.9	Temperature	
2.10	Ground	
2.11	Water/groundwater	
2.12	Snow	
2.13	Wind	
2.14	Temperature	
2.15	Waves	
2.16	Avalanches	
2.17	Earth quake	
2.18	Impact	
2.19	Explosion	
2.20	Fire	
2.21	Chem/Phys agencies	

3.0	General
3.1	Concrete
3.2	Reinforcement
3.3	Prestr steel
3.4	Steel
3.5	Timber
3.6	Aluminium
3.7	Soil
3.8	Masonry
3.9	Model uncert.
3.10	Dimensions
3.11	Imperfections

INTERNAL NATURAL GAS EXPLOSIONS

 $p_d = \max\{3+p_v, 3+0.5p_v+0, 04/(A_v/V)^2\}$

 p_d = equivalent static pressure [kN/m²]

 A_v = area of venting components [m²]

V = volume of room [m³]

Validity:

 $V < 1000 \text{ m}^3$; 0.05 m⁻¹ $\leq A_v / V \leq 0,15 \text{ m}^{-1}$ load duration = 0.2 s

Figure 1: Pressure waves inside the explosion medium: (a) deflagration, (b) detonation

Observed scatter in explosions

	Probability,	Explosion pressure
Significant	1.0	>6 kN/m2
Moderate	0.5-1.0	>10
Severe	0.05-0.3	>20
Very severe	0.02-0.05	>30

Assuming 10 million dwellings in UK one finds an annual probability of $6 \ 10^{-6}$ per dwelling.

Leyendekker (1976, USA and Canada))

Probability per dwelling unit and per year and conditional damage probability

	p(H)	P(D H)	P(D H)
	/year	> 1000 \$	>10 000 \$
Gas explosion	18 10 ⁻⁶	0.14	0.09
Bomb explosion	2 10 ⁻⁶	0.16	0.11
Vehicle ipact	600.10 ⁻⁶	0.14	0.01

UK statistics

	Annual probability of occurrence in dwellings	Possible pressure
Reported explosion but not significant	0.064 x 10 ⁻⁴	<<17 kN/m²
Moderate explosion	0.010 x 10 ⁻⁴	<17 kN/m²
Severe explosion	0.005 x 10 ⁻⁴	>17 kN/m²
Very severe explosion	0.0002 × 10 ⁻⁴	>>17 kN/m²

Statistics The Netherlands (Ligtenberg, 1969)

- fire 10^{-2} in 50 a per building
- errors 10⁻³
- wind 10⁻³
- explosion 10^{-3}
- impact 3 10⁻⁴
- overload 3 10⁻⁴

(collapse factor 10 to 100 lower)

MAN-MADE CATASTROPHIES (EUROPE)

1900-2005

Explosion

Fire

Collapse

distribution over structural members [%]

		Ayyub	Yam
•	Foundation	6	20
•	Column and walls	11	30 (mostly walls)
•	beams and trusses	11	30
•	slabs and plates	34	10
•	Connections	9	
•	others	33	10

Human error / Rob Melchers

	Planning		Utilization		
	and	Construc	mainte-		
Reference	design	tion	nance	Others	Total
CEB 157 (1983)	50 ^b	40 ^c	8	-	98
Matousek (1982)	45 ^d	49	6	-	100
Talylor (1975)	36 ^e	12 ^f	_	I	-
Yamamoto and Ang (1982)	36	43	21	-	100
Rackwitz and Hillemeier (1983)	46	30	23	-	99
AEPIC	67	33	-	I	100
Melchers, et al. (1983)	55	24	21	-	100
Fraczek (1979)	55	53	-	-	108 ^g
Allen (1979)	55	49	_	-	103 ^g
Hadipriono (1985)	19	27	33	20	99
Hauser (1979)	37	35	5	23	100
Gonzales (1985)	29	59	-	13	101 ^g
^a Broken Includes cases where failu	re cannot be a	ttributed clear	ly to any one fac	tor	
^b Broken down as planning 25%; de	sign 25%.				
^c Broken down as materials 15%; ex	ecution 25%.				
^d Broken down as planning 11%; de	sign 34%.				
^e Identified as design, not planning.					
^f Does not differentiate between con	struction and u	utilization.			
^g Multiple erros for single failure.					

Ellingwood / Distribution of errors over the building Process by Phase:

On the average this leads to: design errors 40 %, construction errors 40% and utilization errors 20%.

Scheider/Matousek (500 cases)

Lack of knowledge	25 %
Careless engineering	30 %
Real error	15 %
Accepted risk	20 %

Imam/Chryssanthopoulos (156 failures bridges, steel)

design	24 %
limited knowledge	23 %
natural hazard	19 %
human error	14 %
accidents	13 %

Description of the participant (1)	Failure cases (%) (2)
Project architect	3.0
Structural designer	48.2
Resident engineer	31.1
Inspector	27.6
Contractor (head office)	3.8
Contractor (site staff)	59.6
Contractor (workmen)	17.4
Operator (crane, vehicle, ship)	2.8

TABLE 8. Distribution of Failure Cases with Respect to Sources of Error by Participant

Publications on Accidental Statistics

1968 Pugsley **1969 Ligtenberg** 1975 Taylor 1976 Moffat 1976 Leyendekker 1979 Fraczek 1979 Allen 1979 Hauser 1980 Yam 1982 Ferry Borges / Silveira 1982 Yamamoto / Ang 1982 Matousek / Schneider 1983 CEB 1983 Rackwitz / Hillemeier 1983 Melchers et all 1985 Hadipriono 1985 Gonzalez **1987 Ellingwood 1991 Ayyub** 1998 WOAD (Offshore) 2008 Imam/Chryssanthopoulos

Activity 5: Structural models

Key words:

- Alternative load path
- * catenary action,
- * rotation capacity,
- *** dynamics**

Activity 5 Structural models

Documents

- Cover note (draft)
- Note on steel structures (Kuhlman/Rolle)
- Note on concrete slabs (Taerwe/Decan)
- Note on timber structures (Theleanderson)
- Note on composite structures (Kwasniewski)
- Note on existing timber structures (Markova)
- Historical structures (promise, Julio)

Zurich papers:

- Izzudin (sudden column failure)
- Byfield (requirement on joint ductility)
- Kuhlman (joint ductilty steel structures)
- Cichocky (concrete damage models / blast loading)
- Gizejowski/Kwasnieuwski (joints in comp struc)
- Taerwe (catenary action in slabs)

Activity 5 Structural models

Information in basic notes for each material:

- material properties for large deformations
- element behaviour for large deformations (columns, beams, plates, joints)
- system behaviour for large deformation
- experimental data
- computer codes (geo + physical nonlinear AND/OR dynamic)
- comparison to design rules

RC slabs: laterally restrained

MAGNEL LABORATORY FOR CONCRETE RESEARCH Coimbra, March 2009 Engor Action Protocont of Robustinal Strategy of Structures

Act 4/5 Demonstration case: Removed column

- Mean value analysis
- Sensitivity analysis
- Estimate P(F|D)
- Apply EC1991-1-7 tying rules for consequence class 2-HIGH
- Recalculate P(F|H)
- Estimate probability of basic event p(D) = P(D|H)P(H)
- Estimate Consequences
- Compare robustness measures
- Estimate costs of Eurocode rules
- Estimate cost effectiveness of EC rules

Demonstration of:

deterministic model

probabilistic model

robustness measures

cost effectiveness of measures

