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Summary 

Concrete structures are usually designed based on small deformation theories. Every 
element is studied separately and only limited attention is given to the interaction between 
the different elements and their connections. In accidental situations large deformations will 
occur and the interaction between the different elements becomes important to provide 
alternate load paths. 

For large deformations specialized material models are required. Using these large 
deformation models the geometrical non-linear behaviour of slabs and beams can be 
studied. In former years limiting cracks and deformations in concrete elements were one of 
the major design criteria. Therefore only limited experimental research is available to 
validate models describing large deformations. 

In the current standards detailing rules are given. These reinforcements provide extra 
strength, ductility and continuity in constructions and should be taken into account during 
accidental situations. It is advised to implement the following aspects when designing 
constructions: load carrying capacity due to geometrical nonlinear behaviour, strength of 
connections between elements and the configuration of elements to provide alternate load 
paths. 

To conclude an example is given of a two span beam subjected to large deformations. The 
arching and catenary action result in a much larger load carrying capacity than the design 
load, provided the edges are perfectly restrained. 
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Background / Introduction 

A number of structural failures in the second half of the 20th century have proven that 
adequate resistance of a structure is not obtained through the design of its individual 
elements only. The designer is therefore confronted with the fact that the connections of the 
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different elements and the concept of the design have a significant influence on the resulting 
safety level of the structure and more importantly their sensitivity to progressive collapse. 

This fact sheet discusses the use of concrete members in the design of structurally robust 
structures. Robustness is concerned with those events that are so unlikely to occur that 
traditional calculation methods only have a limited value. Therefore special attention is given 
to those situations where the geometrical and physical nonlinear behaviour dominates the 
load carrying capacity of concrete elements. 

 

Problem statement / Key issues 

In current engineering practice, the design of a concrete structure focuses on the design of 
its composing elements. Linear and quasi-linear design methods, based on the assumption 
of small deformations, are most commonly used to determine the size and strength of these 
elements. Only limited attention is given to the connections between elements. Usually the 
detailing of these connections is experience based or governed by the applied standards. 

This element-by-element approach is quite pragmatic and doesn’t take the structural integrity 
based on the global design of the structure into account. It also gives no implication of the 
behaviour of the structure under large deformations which are bound to occur when 
excessive damage is imposed on the structure during a calamity. 

When designing concrete structures, especially those of consequence class 3, the following 
aspects should be included: 

• the increased (or decreased) load carrying capacity due to geometrical nonlinear 
behaviour; 

• the strength of the connections between elements, especially when large 
deformations are allowed in the design; 

• the configuration of elements to provide alternate load paths to provide extra 
redundancy. 

 

Material models 

Current codes provide the designer with different models to describe the material behaviour 
of concrete and reinforcing steel. However, when large deformations or dynamic aspects of 
the analysis are taken into account different or adapted models are more suited to describe 
the material behaviour. 

Time dependent phenomena like creep and shrinkage are beyond the scope of this 
document. Only the stress/strain relations of concrete and reinforcing steel and the bond-slip 
behaviour between these at ambient temperature are considered. 

During the design of concrete elements in normal ULS and SLS the main strength 
parameters are obtained by applying the appropriate partial safety factors to the nominal 



Concrete beams and slabs 

115 

values. The most commonly used models to describe the concrete behaviour only apply to 
those situations in which the deflections of the element are deemed small enough to be 
negligible (CEN, 2004). If nonlinear effects are taken into account these models don’t suffice. 
To study the large deformation behaviour of concrete elements more realistic models should 
be applied which are based on the mean values of both concrete and reinforcing steel 
strength. This is especially true for those cases in which in-plane forces (arching, catenary or 
membrane action) contribute significantly to the overall stability of the structure. Using the 
design values usually leads to an overestimation of deflections and hence to an 
overestimation of the load carried by in-plane forces and the rotation capacity. 

For a geometrical nonlinear analysis Eurocode 2 (CEN, 2004) and Model Code 1990 (CEB-
FIP, 1991) propose a stress-strain relationship as defined in equation 1. When the strain is 
larger than the nominal ultimate strain  the designer could either choose a zero stress, a 
curve tangent to the proposed curve in  following an exponential path to zero or any 
other curve describing the behaviour of concrete at these large strains. For the tensile 
behaviour the concrete can be assumed linear elastic until  with exponential tail 
behaviour. 

   (1) 

Only reinforcing steel with high ductility should be used when large deformations are allowed 
during the robustness design. A modified bilinear stress-strain relationship can be used to 
describe the material behaviour that includes hardening of the steel. For hot rolled, heat-
treated bars the model in Figure 1 can be used, since it closely resembles the actual stress-
strain relationship. 

 

Figure 1: Left: Nonlinear stress-strain model for concrete in compression: (a) cut off, (b) 
exponential and (c) bilinear tail. Right: Nonlinear stress-strain model for reinforcing 

steel: (a) bilinear and (b) constant-parabolic 

Model Code 1990 proposes a model to describe the bond-slip behaviour between reinforcing 
bars and concrete. At relatively small slip values the peak stress is reached which is followed 
by a bilinear softening branch. In large deformation analysis it can suffice to only model this 
last horizontal part of the bond-slip model to avoid negative pivots during finite element 
analysis. 
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The removal of a load bearing element usually occurs suddenly. In case of an explosion this 
is only a matter of a few milliseconds so that the structure responds dynamically to this 
event. Several authors have stated (Val and Val, 2006) that if the structure possesses 
sufficient ductility, the occurrence of large deformations and energy dissipation significantly 
reduces the impact factor. If the ratio of the maximum to the elastic deformation is for 
example 6 then the dynamic impact factor is already reduced to 1.1. Taking into account that 
the stiffness and strength of materials usually increases under impact loading, the dynamic 
effect may become negligible in most practical cases. Therefore a nonlinear static analysis 
should yield fairly accurate results if sufficient ductility is provided. 

 

Redundancy in RC elements 

The capacity of a structure to carry loads that exceed those that were specified during 
design depends on a wide variety of parameters. First of all the geometry of the elements 
can lead to a higher load carrying capacity. Also the ductility of the elements is often not 
taken into account during design. Other than that alternate load paths might be available in 
the structure so that failure of one element does not result in the overall failure of the 
structure. 

Geometry 

One of the major challenges in the case of excessive damage of a system is that the force 
distribution within the constituting elements can change drastically. Taking the case of a 
statically indeterminate beam with two equal spans as an example the moment at the central 
support will change sign when the central column fails (Figure 2). Most steel beams are 
prismatic and symmetrical, this section can resist a sagging moment of the same magnitude 
as the hogging moment it was originally designed for. Concrete elements however are – 
although mostly prismatic of geometry – not symmetrical in reinforcement. Therefore a 
failure of the central column would lead to immediate failure of the element if no precautions 
are taken to withstand the change in moment direction. 

 

Figure 2: Lack of redundancy of RC beams in accidental situations 

Concrete elements are usually sufficiently resistant to lateral instability problems. Only in the 
case of slender prestressed girders this problem might occur but only during the 
manipulation of the girder. Once the beam is in place the element has sufficient lateral 
support and is no longer susceptible to these lateral instability phenomena. 
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Ductility 

The plastic material reserves of reinforced concrete depend on the difference between the 
design values and the actual mean values of concrete and reinforcing steel strength. For 
construction steel the JCSS probabilistic model code (JCSS, 2001) provides sufficient 
information to determine all necessary parameters to study the large deformation behaviour. 
Unfortunately no specific information is given to estimate the actual mean value of the 
ultimate tensile strength and ultimate strain of the reinforcing steel. 

When linear elasticity is assumed in the analysis of an element there is also a linear 
relationship between the curvature and the bending moment in every section. As Figure 3 
clearly shows the relationship between curvature and bending moment is nonlinear in 
nature. Only the first part of the graph can be considered linear. Once the critical moment is 
reached, and cracks form, the stiffness drops. The moment-curvature relationship in this 
branch is nonlinear due to tension stiffening. At the yield moment the reinforcing steel yields 
and the curvature rapidly increases until either the concrete crushes or the steel ruptures. 
The length of this last branch determines the ductility of the section subjected to bending. 

 

Figure 3: Lack of redundancy of RC beams in accidental situations 

Force redistribution 

Design methods that use the plasticity of the materials were first developed in steel 
construction. Steel is a very ductile material and therefore some economy can be obtained 
by utilizing the plastic reserves and force redistribution within steel structures. Things are 
slightly different in concrete elements. The amount of reinforcement is chosen based on the 
expected moment in that section. Therefore the use of plastic methods as an economy 
measure plays only a secondary role. 

Plastic analysis does however allow for some freedom in the placement of reinforcing steel 
as shown in the following example (Figure 4). Considering the ultimate moment in the span 
is different from that at the central support, the virtual work theorem yields the ultimate load 
in equation 2. Assuming that the resisting moments are only depending on the tensile 
reinforcement in the considered section and the lever arm is constant the previous equation 
can be simplified (equation 2). This simplification proves that there is a certain freedom in 
the placement of reinforcing steel in statically indeterminate beams. As long as the ratio 
between the reinforcements is respected according to the simplified formula, the ultimate 
load of the system will be the same. This freedom is only limited by the rotation capacity of 
the sections and limitation of deflections and crack widths. 
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     (2) 

 

Figure 4: Example beam for reinforcement redistribution in RC beams 

In normal design procedures the acting moments are calculated based on a constant 
stiffness along the element. Due to cracks and the non-symmetrical placement of 
reinforcement the stiffness does not remain constant during loading. Regions with higher 
stiffness attract larger bending moments and a redistribution of moments is realized from the 
less stiff areas to the stiffer areas. For the previously mentioned beam the ratio of elastic 
moments is . If the designer reinforces accordingly the moment 
redistribution after cracking leads to a moment ratio . which differs significantly 

from the moment distribution as obtained by a linear theory. 

 

Design based on nonlinear behaviour 

Normal design methods as commonly used in the designer’s practice are beyond the scope 
of this fact sheet. In what follows only those design methods are discussed which are 
particularly useful when damaged structures or structures near collapse are studied. 

Yield line theory 

The yield line theory is a method of designing reinforced concrete slabs. A yield line is a 
crack in a reinforced concrete slab across which the reinforcing bars are yielding. Due to this 
yielding a plastic rotation along this line occurs. The theory is based on the principle that the 
work done in rotating yield lines equals the work done due to load displacement. Since the 
method is based on the work method it will always overestimate the load carrying capacity of 
the plate. The aim is finding the yield line pattern that results in the minimal load capacity. 
The same principle can be used to design beams. In these linear elements plastic hinges are 
formed. 

The basic yield line theory (Johansen) is based on small deformations. More advanced 
models have been developed (Bailey, 2001 and Bailey et al., 2008) to include in plane 
forces due to the large deflections and thermal loading. 

Arching, catenary and membrane action 

Slabs and beams are designed as flexural members i.e. they transfer loads by developing 
moment and shear stresses. At low deformations these assumptions are accurate, but at 
large deformations these members can also transfer loads by in plane stresses (or normal 
forces in the case of a beam). 
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A typical load-deflection curve of a slab with full edge restraint is shown in Figure 4 (Park, 
1964). A similar curve is obtained when analysing beams as will be shown in the example. 
One can distinguish four phases: 

• linear elastic phase (first part of AB); 

• nonlinear phase with the developing of yield lines and compressive membrane forces 
(second part of AB); 

• softening branch due to yielding of steel and disappearing of compressive membrane 
forces (part BC); 

• hardening branch due to tensile membrane action of the reinforcement (part CD). 

 

 

Figure 4: Schematic load-deflection curve of a slab with full edge restraint (Park, 1964) 

It is observed that the ultimate load at B is significantly higher than the load calculated using 
Johansen’s yield line theory. This is the result of compressive membrane forces that develop 
in the slab after cracking. As the deflection becomes larger the compressive membrane 
forces reduce to zero and full depth cracking of the slab occurs (point C). The membrane 
force becomes tensile and the slab’s reinforcement grid acts as a plastic membrane (Park, 
1964). 

Perfectly unrestrained slabs are rare, but there are a lot of situations where the horizontal 
restraint is small or negligible, e.g. the corner panel of a continuous RC plate supported by 
columns. 

Unlike horizontally restrained slabs, these slabs develop no compressive membrane action. 
However at large deflections tensile membrane action occurs in the central span region 
while a compressive ring develops around the slab’s perimeter (Figure 5). 
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Figure 5: Membrane action of horizontally unrestrained slabs (Foster et al., 2004) 

Rotation capacity 

For these geometrical nonlinear effects as well as the earlier discussed moment 
redistribution to take place each section must have sufficient rotation capacity. It is the 
rotation of certain sections that create the necessary deformations to allow for phenomena 
like catenary action. Overestimating the rotation capacity can lead to a serious 
overestimation of catenary load carrying capacity. 

 

Detailing rules based on current code provisions 

Reinforcement requirements 

In current design practice the main reinforcement in RC beams and slabs is calculated for 
the critical sections. Part of this reinforcement is curtailed based on the envelope of the 
acting tensile force. Design codes of RC structures also provide 

• rules for minimum amounts of reinforcing steel e.g. to avoid brittle failures and 
excessive cracking; 

• detailing rules e.g. reinforcement arrangements at intermediate and end supports of 
beams and slabs, in columns and walls, etc.; 

• ductility conditions; 

• reinforcement requirements for fire design. 

It is useful to investigate to which extent these code provisions contribute to robustness in 
providing additional load paths or increasing the ultimate load. Traditionally, most RC 
structures have not explicitly been designed for robustness, and yet it can be observed that, 
in case of unexpected accidental loading, some degree of inherent robustness is available. 
This implies that the above mentioned rules could provide additional robustness without any 
additional costs. 

Tying systems 

In section 9.10 of EN 1992-1-1 (CEN, 2004) it is stated as a principle that concrete 
structures which are not explicitly designed to withstand accidental actions, shall have a 



Concrete beams and slabs 

121 

suitable tying system to prevent progressive collapse by providing alternate load paths after 
local damage. The following types of ties have to be provided: 

• peripheral ties (also along internal edges); 

• internal ties, connected to the peripheral ties, in each floor and roof level in two 
directions at approximately perpendicular angles; 

• horizontal ties at edge columns and walls; 

• vertical ties in columns and/or walls in panel buildings of five storeys or more to limit 
the damage of collapse of a floor in the case of accidental loss of the column or wall 
below. 

 

Limitations 

Up until now, design methods have always focused on limiting cracks and deformations in 
concrete elements. Therefore only limited experimental research is available on the large 
deformation behaviour of concrete elements. 

Because of this it is quite difficult to validate the results of finite element models subjected to 
large deformation behaviour, especially when simplified models are used. Detailed models of 
geometry and material properties have proven to be challenging in computation time, but 
especially in numerical stability. 

Even when it is possible to predict the large deformation behaviour of a structural element, 
the designer needs to give special attention to the boundary conditions created by the rest of 
the structure. If the axial stiffness of the supports is overestimated, so will be the load 
carrying capacity due to arching or catenary action. 

Not only the stiffness, but also the strength of the boundaries needs to be checked. The 
designer needs to be confident that the surrounding structure can withstand the axial and in 
plane forces that accompany catenary and membrane action. Pulling the surrounding 
columns inwards for example might result in buckling due to a larger imposed imperfection. 

 

Example / Illustration / Case studies 

A 3D finite element model was created to study the large deformation behaviour of a two 
span concrete beam (Decan and Taerwe, 2008). Two analyses were done, one including the 
central support and one without central support, simulating the loss of a column. The goal of 
the calculation was to check if the detailing rules in the Eurocode provide some extra 
robustness to RC beams. In this case horizontal tyings were provided and the bottom 
reinforcement continues over the central support. 

Up until formation of the first cracks, the behaviour is linear elastic and no normal forces 
occur in the beam. When the first cracks appear the length of the beam tends to increase. 
Due to the axial constraints this leads to a compressive force (arching action) in the beam. 
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The load increases until plastic hinges form and the maximum load is reached. A softening 
branch follows as the compressive forces disappear. When the deflection continues to 
increase a tensile force develops in the longitudinal reinforcement. Due to catenary action 
these tensile forces can transfer loading well beyond the first load maximum until the 
ultimate tensile strain of the reinforcement bars is reached. 

The load carrying capacity of the beam without central support seems to be very limited at 
small deflections. However at large deflections – usually larger than the height of the beam 
itself – the service load is reached. 

 

Figure 6: : Results of analysis of a two span beam – (a)  applied load and normal force; (b)  
with and without central support 

This example demonstrates that in the case of horizontal restraints a significant increase in 
load carrying capacity could be observed due to catenary action of the reinforcing steel at 
large deflections. In the unforeseen event of a column failure the beam would still be able to 
carry the design load, but with excessive deformation. The designer must verify if sufficient 
ductility/rotation capacity is available to withstand these deformations and if the connections 
are able to withstand the extra (normal) forces during catenary action. 
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