

Vulnerability Analysis of Structures

Jitendra Agarwal

David Blockley, Norman Woodman, (Late) Bill Smith, Research students (Wu, Yu, Lu, Pinto, England) & EPSRC

KObjectives

- To consider the robustness of structures
 - Structural vulnerability analysis
- To present an approach to manage risks
 - Vulnerable failure scenarios

KRobustness

- There is no theory of robustness
- Structural design based on a load model
- Loads change
 - climate change, structural usage
- Structures deteriorate
 - corrosion, carbonation
- New demands arise
 - terrorist threat

KRobustness

- Common measures for protection
 - Strengthening schemes
 - Manage loads and usage
- Examine the form of the structure
 - identify inherent weakness in form
 - explore actions posing the threats
 - manage the associate risks

- An analysis of form and connectivity
- Uses characteristics of members and joints
- Enables identification of scenarios with disproportionate consequences to damage
- Damage may be due to any possible action

2D Rings and 3D Rounds

- configuration capable of carrying a set of forces

- Well formedness of a ring/round
 - based on the properties of the members and their connectivity

$$q_i = det(K_{ii})$$
 (product of eigenvalues)

$$Q = \Sigma q_i / N$$

- a measure that helps in ranking rings and clusters

- Cluster
 - a set of tightly connected structural components
- Clustering criteria
 - Well-formedness
 - Minimum damage demand
 - Nodal connectivity
 - Distance from reference

Hierarchical representation of the system

- Unzip the hierarchy in a specific way to find vulnerable failure
 - not a reference cluster
 - forms a ring with the reference cluster
 - connects directly to the reference cluster
 - a leaf cluster rather than a branch cluster
 - least well-formedness
 - least minimum damage demand
 - clustered the latest

- Maximum failure scenario
 - large failure with least effort
- Minimum demand failure scenario (2)
 - easiest way to damage a structure
- Minimum failure scenario (8 or 9)
 - causes the least loss of form of the structure
- Total failure scenario (1 or 2)
- Specific failure scenario

(2)

- Damage demand
 - effort required to damage members
 - member properties
- Consequence
 - relative change in well-formedness
 - form of the structure
- Vulnerability index
 - consequence in proportion to damage demand

- Structural vulnerability
 - about the relative size of the consequences of damage to the effort in producing that damage
 - no matter the chance of it happening
- Vulnerability + Threat = Risk
- Chance of threat is equally important to manage the risks

- Threat may be due to one or more actions
 - Extreme natural hazards
 - Degradation of material
 - Accidental damage
 - Intentional damage
- Identify actions for each failure scenario

Structural Risk

- Modify or protect the vulnerable parts
- Monitor or remove the actions causing high risks

Conclusion

- Vulnerability analysis examines the form
- Vulnerable failure scenarios identified
- Risk can be managed by improving the form or controlling the actions
- Flexible and adoptive approach for known and unknown actions

