1st Workshop and 3rd Management Committee (MC) Meeting COST Action TU0601 – Robustness of Structures February 4 and 5, 2008, ETH Zurich, Switzerland

Building a Robustness Index

Sara Casciati¹⁾ and Lucia Faravelli²⁾

University of Catania, Italy
 University of Pavia, Italy

Design Philosophy

- Optimal design: minimum cost & adequate performance.
- Reliability-oriented optimal design: the structural performance is usually judged based on reliability, which must be kept above a certain threshold.
- <u>One-level optimization</u>: instead of considering the reliability estimate as a self-standing optimization problem, it is included in the cost-benefit analysis by using the Kuhn and Tucker conditions (F_{KT}).
- Idea: also robustness can be introduced in the optimization problem as a further requirement for an adequate structural performance.

System Objectives

Cost minimization → (F_C, w_C)
 Reliability requirement → (-F_R, w_R)
 Robustness → (-F_I, w_I)

where the weights w_X represent the Lagrange multipliers and increase with the safety margin within which the corresponding requirement is fulfilled.

Reliability & Robustness Oriented Optimal Design

m is the number of failure modes.

Objective 1: Cost

from: Rackwitz, R. (2002). Optimization and Risk Acceptability Based on the Life Quality Index, *Structural Safety*, 24, 297-331.

For a public structure whose reconstruction is systematic upon failure, which may only occur at the completion of the structure

$$F_C(\boldsymbol{x}) = C(\boldsymbol{x}) + [C(\boldsymbol{x}) + K] \left(\sum_{i=1}^m P_{f_i}(\boldsymbol{x}) \right) / \left(1 - \sum_{i=1}^m P_{f_i}(\boldsymbol{x}) \right)$$

where:

- $C(\mathbf{x})$ is the design and construction cost of the structure;
- $K = K_M + K_H$ is the sum of the direct cost of the structural failure (including both the damage and the debris removal), K_M , and the cost of saving human lives, K_H ;
- P_{fi} is the probability of the *i*-th failure mode.

Objective 2a: Reliability Requirement

• Imposing: $P_{fi} \leq 10^{-6}$

for i=1,...,m (number of failure modes)

Is equivalent to minimize:

$$F_{R}(\mathbf{x}) = -\sum_{i=1}^{m} \frac{10^{-6} - P_{fi}(\mathbf{x})}{P_{fi}(\mathbf{x})}$$

Objective 2b: Reliability Estimate

Kuhn and Tucker Conditions:

$$F_{KT}(\boldsymbol{x},\boldsymbol{u}_{1},\ldots,\boldsymbol{u}_{m}) = \sum_{i=1}^{m} \left[|g_{i}(\boldsymbol{u}_{i},\boldsymbol{x})| + \sum_{j=1}^{N-1} \left| \left(u_{ij} \left\| \nabla g_{i}(\boldsymbol{x}) \right\| + \nabla g_{ij} \left\| \boldsymbol{u}_{i}(\boldsymbol{x}) \right\| \right) \right]$$

- where: g_i(u_i,x) is the *i*-th limit state function, with i=1,..,m.
- When, for any *i*, both the contributes to F_{KT} are null, $||u_i||$ represents the value of the reliability index β_i for the *i*-th failure mode, from which one determines P_{fi} as $\Phi(-\beta_i) = \Phi(-\mu_{gi} / \sigma_{gi})$, being $\Phi(.)$ the standard normal cumulative distribution function.

Objective 3: Robustness

Example: "weak beam/strong column" requirement in the design of a building

Portal-Frame Numerical Example

<u>*N* = 9 Random Variables</u>

Random Variable	Distribution	Mean	Standar i Deviation
M_1, M_5	Normal	μ_{s} [kN m]	13.5 [kN m]
M ₃	Normal	μ _k [kN m]	13.5 [k N m]
M_{2c}, M_{4c}	Normal	μ_{t} [kN m]	13.5 [k N m]
M_{2b}, M_{4b}	Normal	μ ₈ [kN m]	13.5 [k N m]
H	Normal	50 [kN]	15 [kN]
r	Normal	40 [kN]	15 [kN]

Robustness Index Formulation

• Robustness Function: $Z = M_{pc} - M_{pb} \ge 0$

Corresponding Robustness Index:

$$I = \frac{\mu_Z}{\sigma_Z} = \frac{\mu_c - \mu_b}{\sqrt{\sigma_c^2 + \sigma_b^2}} \ge 0$$

• $(\mu_b, \sigma_b), (\mu_c, \sigma_c)$ = means and standard deviations of the plastic moments of the beams and of the columns, respectively.

Optimization Problem Particularized for the Portal-Frame Example

• $x = [\mu_c \ \mu_b]^T$ is the vector which collects the design parameters, so that :

$$F_I(\mathbf{x}) = -I = \frac{x_2 - x_1}{\sqrt{2} \cdot 13.5}$$

- $C(x) = 3\mu_c + 2\mu_b$ is the design and construction cost;
- $K = K_M + K_{H_{\gamma}}$ where: $K_M = 10^5$ is the direct cost of the structural failure, (including both the damage and the debris removal); $K_H = 2.4 \ 10^6$ is the cost of saving human lives,
- Finally, m = 3 is the number of failure modes and P_{fi} is the probability of the *i*-th failure mode, computed by considering the following nonlinear limit state functions.

Nonlinear Limit State Functions

- Sway-mode: g₁=M₁ + min(M_{2c}, M_{2b}) + min(M_{4c}, M_{4b}) + M₅ hH
 Beam-mode: g₂=min(M_{2c}, M_{2b}) + 2M₃ + min(M_{4c}, M_{4b}) hV
- Complete mechanism: $g_3 = M_1 + 2M_3 + 2\min(M_{4c}, M_{4b}) + M_5 hH hV$

The corresponding gradients must be computed piecewise.

Solution via Differential Evolution (DE) Algorithm

Advantages:

- Search driven by objective function itself, instead of its gradient
- Independency of the results accuracy from the initial guess
- Few input parameters
- Moderate computational effort with respect to traditional Genetic Algorithms
- Easily adaptable to the solution of different problems

DE Solution Algorithm

DE – Input Parameters

Initial Population Size, NP	160
Search Range	
- Upper Bound	500 kN m
- Lower Bound	1 kN m
Mutation Amplitude, Γ	0.5
Crossover Constant, CR	0.8
Tolerance for	10-4
Convergence, <i>ɛ</i>	
Max Iterations Nr., I	5000

Objective Function Weights Calibration

$$F(\mathbf{x}, \mathbf{u}_1, \dots, \mathbf{u}_m) = w_C F_C(\mathbf{x}) + w_R F_R(\mathbf{x}) + w_{KT} F_{KT}(\mathbf{x}, \mathbf{u}_1, \dots, \mathbf{u}_m) + w_I F_I(\mathbf{x})$$

where the weights w_{χ} represent the Lagrange multipliers and increase with the safety margin within which the corresponding requirement is fulfilled:

Results: objectives evaluated at the optimal point

Case	μ_c	μ_b	Ι	Cost	Iterations
Without robustness	166.50	154.57	0.63	808.66	4212
With robustness	168.64	153.80	0.78	813.52	3098

Reliability Results

Failure mode	$g_i \times 10^{-5}$	β_i	$P_{fi} \times 10^{-5}$			
Without robustness						
column	9.91	5.2190	0.0090			
beam	23.84	5.3943	0.0034			
complete	-10.73	4.5932	0.2183			
With robustness						
column	15.4	5.1002	0.0170			
beam	-0.5	5.0656	0.0204			
complete	-55.43	4.6544	0.1624			

Conclusions

The robustness of a structure can be increased by including it in the design optimization problem. Of course, this happens with an increase of the costs.

The desired hierarchy of failure modes can be achieved by properly adjusting the weights (Lagrangian multipliers) of the different terms in the objective function.

Future Developments

Define extreme events scenarios and compute the conditional probabilities for each failure mode.

- Consider random failure in time by introducing out-crossing rates and interest rates.
- Generalize the process to different types of structural systems.