

Design optimization methodologies to achieve structural robustness

Dimos C. Charmpis

Robustness of Structures COST Action TU0601 1st Workshop, February 4-5, 2008, ETH Zurich, Zurich, Switzerland

Outline of the presentation

- 1. Measuring structural robustness
- 2. Cost-oriented deterministic design optimization
- 3. **RBDO** Reliability-Based Design Optimization
- 4. **RRBDO** Reliability and Robustness-Based Design Optimization
- 5. MO-RRBDO Multi-Objective Reliability and Robustness-Based Design Optimization
- 6. Numerical example
- 7. RRBDO and MO-RRBDO as tools to compare measures and improvement strategies for robustness
- 8. Concluding remarks

Measuring structural robustness – the Robustness Index RI

Baker, Schubert, Faber, "On the assessment of robustness", Struct. Safety, 2007

Damage probability

Risk due to indirect consequences

Indirect consequences

- Single-objective optimization under uncertainty: - incorporated reliability constraint
- Requires the evaluation of failure probability P_f for each candidate optimum design considered:
 - computationally intensive
 - customized approaches to enhance computational efficiency (iterative solution techniques, neural network predictions, etc.)

Department of Civil and Environmental Engineering University of Cyprus

RRBDO – Reliability and Robustness-Based Design Optimization

- Treating robustness: a further step beyond controlling reliability - we are interested in <u>reliable</u> and <u>robust</u> structures
- RBDO already controls reliability
- Straightforward optimization approach to treat robustness: built upon RBDO by adding a robustness constraint

RRBDO – Reliability and Robustness-Based Design Optimization

RRBDO – Reliability and Robustness-Based Design Optimization

Thus, the upgrade of RBDO to RRBDO requires additional constraints both on:

- damage probability (P_d)
- robustness (RI)

 $d_i \in D, i=1,...,n_d$

Department of Civil and Environmental Engineering University of Cyprus

RRBDO – Reliability and Robustness-Based Design Optimization

To apply RRBDO, the allowable values	minimize	$C(\mathbf{d})$
$P_{f,\max}, P_{d,\max}, RI_{\min}$ are required	subject to	$g_j(\mathbf{d}) \ge 0, \ j=1,\ldots,n_g$
• <i>P_{f,max}</i> , <i>P_{d,max}</i> can be taken from codes/guidelines/literature or set according to experience		$P_f(\mathbf{d}) \leq P_{f,\max}$
		$P_d(\mathbf{d}) \leq P_{d,\max}$
		$RI(\mathbf{d}) \ge RI_{\min}$
• RI _{min} =? How much is a satisfactory RI?		$d_i \in D, i=1,\ldots,n_d$
 No guidelines/studies/experience yet 		

- No universal adoption of a robustness measure
- No calibration of robustness measure against desired structural performance

Difficulty in applying RRBDO to practical design cases

MO-RRBDO – Multi-Objective Reliability and Robustness-Based Design Optimization

- Need for alternative formulation to:
 facilitate a more thorough RI-investigation
 enrich detected design options
- Upgrade of RI:
 from being handled in a constraint
 to being pursued as an objective

Department of Civil and Environmental Engineering University of Cyprus

MO-RRBDO – Multi-Objective Reliability and Robustness-Based Design Optimization

MO-RRBDO – Multi-Objective Reliability and Robustness-Based Design Optimization

Favorable and unfavorable tradeoff between Cost and Robustness

Numerical example: steel member in pure bending

I-shap and 4	f_{w}	Yield moment: $M_Y = \sigma_Y \frac{I}{c}$ - Plastic moment: $M_P = \sigma_Y As_1$	→	Performance function monitoring yielding initiation (damage) $g_Y = M_Y - M$ \downarrow $P_d = P(g_Y < 0)$ Performance function monitoring fully plastic deformation (failure) $g_P = M_P - M$ \downarrow $P_f = P(g_P < 0)$
	Random variable	Probability distribution	Mean value	e C.o.V.
	Yield stress σ_Y	Normal	250 MPa	7%
	Applied moment M	Normal	1500 kNm	25%
	Department of Civil and Environ Iniversity of Cyprus	nmental Engineering		15

Numerical example: steel member in pure bending

Numerical example: steel member in pure bending

Optimal designs obtained with RRBDO and MO-RRBDO – $C_r = 1000$

Department of Civil and Environmental Engineering University of Cyprus

Numerical example: steel member in pure bending

Pareto-optimal designs obtained with MO-RRBDO for various C_r-values

RRBDO and MO-RRBDO as tools to assess measures and improvement strategies for robustness

Since structural robustness is a relatively new concept, investigation is required to:

- compare alternative robustness measures
- compare simplified robustness measures with 'exact' measure (e.g. for use in codes)
- compare alternative actions to treat robustness
- identify generally applicable and cost-effective actions to improve robustness

Department of Civil and Environmental Engineering University of Cyprus

RRBDO and MO-RRBDO as tools

to assess measures and improvement strategies for robustness

Aim: perform comparisons – identify suitable actions

Traditional approach

- *'manual' extensive parametric investigations*
- potentially subjective conclusions affected by opinions/preferences/ experience of designer

of particular interest to COST Action TU0601 **RRBDO / MO-RRBDO approach**

- automatic extensive investigations
- fair and objective comparisons of competing/controversial actions
 ⇒ firm/reliable conclusions
- capability to investigate at the edge of design feasibility (limit of satisfaction of constraints)

RRBDO and MO-RRBDO as tools to assess measures and improvement strategies for robustness

Example: Pareto front curves corresponding to two strategies S_1 and S_2 for improving robustness

Department of Civil and Environmental Engineering University of Cyprus

Concluding remarks

- **RRBDO** and **MO-RRBDO**: single- and multi-objective design optimization approaches to treat structural robustness
- It is envisaged that these new approaches will be exploited to:
 detect high-robustness solutions
 perform tradeoff analysis of competing design objectives
 - perform comparisons
- **Recommendation:** use of MO-RRBDO until available information justifies/facilitates the use of RRBDO
- Future issue to consider: computational efficiency - the new optimization approaches need to become more tractabe to structural engineering practice

Design optimization methodologies to achieve structural robustness

Dimos C. Charmpis

Robustness of Structures COST Action TU0601 1st Workshop, February 4-5, 2008, ETH Zurich, Zurich, Switzerland