Robustness of Structures COST Action TU0601 1st Workshop, February 4-5, 2008, ETH Zurich, Zurich, Switzerland

Robustness oriented analysis of concrete structures subjected to blast exposure

Krzysztof Cichocki Koszalin University of Technology Department of Civil and Environmental Engineering

MATERIAL MODEL FOR CONCRETE – BASIC FEATURES

- •Different compressive and tensile characteristics;
- •Initial linear-elastic behaviour;
- Hardening/softening in compression;
- •Softening in tension;
- •Damage;
- •Rate-dependent behaviour;

M.Basista, W.K.Nowacki (Eds), Modeling of Damage and Fracture Processes in Engineering Materials, IPPT, 1998

RATE-DEPENDENT PLASTIC-DAMAGE MATERIAL MODEL FOR CONCRETE

- Continuum Damage Mechanics Kachanov (1958)
- Helmholtz free energy potential Lubliner (1972), Mazars and Pijaudier-Cabot (1989)
- Two independent internal scalar damage variables: d⁺, d⁻ (tension, compression) Lemaitre (1984)
- Effective stress concept Lemaitre and Chaboche (1978)
- Rate dependent behavior Simo and Ju (1987)

Kachanov, L.M. (1986), Introduction to Continuum Damage Mechanics, *Martinus Nijhoff Publishers* Lubliner, J. (1972), On the Thermodynamical Foundations of Non-Linear Solid Mechanics, *Int. J. Non-Linear Mech.*, Vol. 7 Mazars, J.; Pijaudier-Cabot, G. (1989), Continuum Damage Theory. Application to Concrete, *J. of Eng. Mech., ASCE*, Vol. 115 Lemaitre, J. (1984), How to Use Damage Mechanics, *Nuclear Engineering and Design*, Vol. 80 Lemaitre, J. (1996), A Course on Damage Mechanics, *Springer* Simo, J.C.; Ju, J.W. (1987), Strain and Stress Based Continuum Damage Models, *Int. J. Solids Structures, Vol. 23*

Effective stress $\overline{\sigma}$, damage parameter d

 $\frac{\vec{\mathbf{F}}}{S-S_d}$ $=\frac{\sigma}{1-a};$ $d = \frac{S_d}{S_d}$ $0 \le d \le 1$

General 3D representation:

 $\overline{\boldsymbol{\sigma}} = \mathbf{D}_o : (\varepsilon - \varepsilon^p)$

Helmholtz free energy

 $\Psi(\varepsilon,\varepsilon^p,d^+,d^-) = (1-d^+)\Psi_0^+(\varepsilon,\varepsilon^p) + (1-d^-)\Psi_0^-(\varepsilon,\varepsilon^p)$

$$\Psi_{0}^{+} = \Psi_{0}^{+} (\overline{\sigma}(\varepsilon, \varepsilon^{p})) = \frac{1}{2} \overline{\sigma}^{+} : \mathbf{D}_{0}^{-1} : \overline{\sigma}$$
$$\Psi_{0}^{-} = \Psi_{0}^{-} (\overline{\sigma}(\varepsilon, \varepsilon^{p})) = \frac{1}{2} \overline{\sigma}^{-} : \mathbf{D}_{0}^{-1} : \overline{\sigma}$$
$$\overline{\sigma}^{+} = \langle \overline{\sigma} \rangle = \sum_{i=1}^{3} \langle \overline{\sigma}_{i} \rangle \mathbf{p}_{i} \otimes \mathbf{p}_{i}$$
$$\overline{\sigma}^{-} = \rangle \overline{\sigma} \langle = \sum_{i=1}^{3} \rangle \overline{\sigma}_{i} \langle \mathbf{p}_{i} \otimes \mathbf{p}_{i}$$

Characterization of damage

Equivalent tensile stress $\overline{r}^+ = \sqrt{\overline{\sigma}^+} : \mathbf{D}_0^{-1} : \overline{\sigma}^+$

Equivalent compressive stress

$$\overline{r}^{-} = \sqrt{\sqrt{3}(K\overline{\sigma}_{oct}^{-} + \overline{\tau}_{oct}^{-})}$$

$$\overline{\sigma}_{oct}^{-} = \frac{1}{3} tr(\overline{\sigma}^{-}); \quad \overline{\tau}_{oct}^{-} = \sqrt{\frac{2}{3}} J_2; \qquad K = \sqrt{2} \frac{1 - R_0}{1 - 2R_0}; \qquad R_0 = \frac{f_{0_{2D}}^{-}}{f_{0_{1D}}^{-}};$$

Damage criteria:

$$g^+(\bar{r}^+,r^+) = \bar{r}^+ - r^+ \le 0$$

$$g^{-}(\bar{r}^{-},r^{+}) = \bar{r}^{-} - r^{-} \le 0$$

Evolution of damage variables (Oliver, 1990)

Tension:

$$\dot{d}^{+} = \bar{r}^{+} \frac{\partial G^{+}(\bar{r}^{+})}{\partial \bar{r}^{+}} = \dot{G}^{+} \ge 0$$
$$d^{+} = 1 - \frac{r_{0}^{+}}{\bar{r}^{+}} e^{A^{+}(1 - \frac{\bar{r}^{+}}{r_{0}^{+}})}$$

Compression:

$$\dot{d}^{-} = \bar{\dot{r}}^{-} \frac{\partial G^{-}(\bar{r}^{-})}{\partial \bar{r}^{-}} = \dot{G}^{-} \ge 0$$
$$d^{-} = 1 - \frac{r_{0}^{-}}{\bar{r}^{-}} (1 - A^{-}) - A^{-} e^{B^{-}(1 - \frac{\bar{r}^{-}}{r_{0}^{-}})}$$

Olivier, J.; Cervera, M.; Oller, S.; Lubliner, J. (1990), Isotropic Damage Models and Smeared Crack Analysis of Concrete, Proc. 2nd Int. Conf. on Comp. Aided Analysis and Design of Conc. Struct., Zell am See, Austria Evolution of plastic strain tensor

$$\dot{\varepsilon}^{p} = \beta EH(\dot{d}^{-}) \frac{\langle \overline{\sigma} : \dot{\varepsilon} \rangle}{\overline{\sigma} : \overline{\sigma}} \mathbf{D}_{0}^{-1} : \overline{\sigma}$$

 β – material parameter : $\varepsilon^{p} = \beta(\varepsilon - \varepsilon_{0})$ $H(\dot{d}^{-})$ – Heaviside function

Cauchy stress

 $\sigma = \frac{\partial \Psi}{\partial \varepsilon}; \quad \varepsilon = \varepsilon^e + \varepsilon^p$ $\frac{\partial \Psi}{\partial \varepsilon^e} = \sigma = (1 - d^+)\overline{\sigma}^+ + (1 - d^-)\overline{\sigma}^-$

Yankelevsky, D.Z,; Reinhardt, H.W (1987), Model for Cyclic Compressive Behavior of Concrete, J. of Struct. Eng., ASCE, Vol. 113

CONCRETE SLAB SUBJECTED TO BLAST LOAD

Lennart Agardh, FOA, National Defence Research Establishment, Märsta, Sweden, 1996

- Square (1.2 x 1.2 x 0.06 m), reinforced, clamped slabs subjected to blast loading in a shock tube.
- Material: OPTIROC, steel fibre concrete, fibres Dramix ZC30/50
- Reinforcement in both directions: Φ 8/0.08 m. Steel KS40 (σ_v = 400 MPa).
- Charges (plastic): 0.25 / 0.5/ 0.75 / 2.0 / 3.0 / 4.0 / 5.0 kg Distance: 20 m.

Slab D1, upper surface. Blast load 5 kg

Test D1: charge 5 kg, PEEQ

Test D1: charge 5 kg, DT

Test D1: charge 5 kg, DT

Test D1: charge 5 kg, DC

Test D1: charge 5 kg, DC

CONCLUSIONS

- Relatively simple material models for concrete, based on scalar representation of damage, are useful for many practical applications
- Further verification of the described model is needed for structures with high level of damages
- Optimisation of subroutine VUMAT is necessary in order to reduce the time of analysis
- Presence of rebar should be modeled in a more effective way
- ➢ For many problems it is necessary to model the whole system: structure-environment-explosive. Further study on this problem is indispensable

* D.Kraus, J.F.Wunderlich, K.Thoma, The interaction of high explosive detonation with concrete structures, Proc. of EURO-C International Conference, Innsbruck, 1994