

Models for exposure conditions – a review of available data for snow and flooding in the Czech Republic

Milan Holicky and Miroslav Sykora Czech Technical University in Prague, Klokner Institute

> Introduction Snow load Flooding Concluding remarks

- *Robustness* complicated concept, not understood uniformly
- *Two possible concepts*:
 - \rightarrow Indicator of the ability of a structure
 - \rightarrow Indicator of the ability of a system containing a structure
- *Exposures* to be considered climatic effects such as *snow falls* and *flooding*
- Exposures of structures having insufficient robustness in the Czech Republic
 - \rightarrow Structural failures during the *winter period 2005/2006*, reliability analysis, failure causes
 - \rightarrow *Flooding in 1997 and 2002*, evaluation of discharges, investigation of structural failures

Snow load

Czech Technical University in Prague, Klokner Institute

Stadium in Humpolec, Czech Republic

Lack of robustness

Reliability analysis of roofs

- Design of a *generic member* in accordance with the load combination (6.10) in EN 1990 Alternative (1): $\gamma_{\rm M} = 1.15$; $\gamma_G = 1.35$; $\gamma_Q = 1.5$ Alternative (2): $\chi = s_{\rm s.k} / (G_{\rm k} + s_{\rm s.k})$; $\gamma_Q = 1 + \chi$
- *Limit state function*: $g(\mathbf{X}) = K_R R K_E (G + S_{50})$

Variable	Symb. X	Distr.	Char. val.	The mean	CoV
			$X_{ m k}$	μ_X	V_X
Resistance	R	LN	From (6.10) $+ \chi$	$1.25R_k$	0.10
Permanent load	G	Ν	From (6.10) $+ \chi$	$1.0G_k$	0.10
Snow, 50-years max.	S_{50}	GU	S _{s,k}	$1.02s_{s,k}$	0.22
Resistance uncertainty	K_R	Ν	-	1.0	0.05
Load effect uncertainty	K_E	N	-	1.0	0.10

Results of the reliability analysis

- For $\gamma_Q = 1.5$ the reliability index β significantly varies with the load ratio χ ; for $\chi > 0.4$ rather *low reliability level* is obtained.
- *More uniform* reliability level is achieved for the partial factor $\gamma_0 = 1 + \chi$.

Czech Technical University in Prague, Klokner Institute Structural failures due to snow

• Extreme *exposures*:

- extraordinary *snow load* (where snow was required to be removed, combination of snow and ice)

- *additional loadings* (incompetent intervention into structures, installation of new facilities, water on a roof)

- *Low resistance* of a member (structural vulnerability):

 insufficient *code provisions* (increasing load ratio χ → low reliability; improved heat insulation → accumulation of snow)
 errors in design and defects in execution (inadequate quality control of design and construction)
- The most severe damage in case of *insufficient robustness*:
 - no *tying*
 - low resistance of *key members*
 - vulnerable *detailing*

in July 1997 in Moravia and in August 2002 in Bohemia

Structural failures due to flooding

- Extreme *exposures*:
 - Underground *transport of sediments* and man-made ground
 - Increased *earth pressure* due to elevated underground water
- Structural causes:
 - Insufficient *foundation* (depth, width)
 - Inadequate *construction materials* (unfired masonry units)
 - *Material property changes* due to moisture (volume, strength)
- The most severe damage in case of *insufficient robustness* (no tying)

Was the flooding really so exceptional and unpredictable? \rightarrow evaluation of annual discharges (in Prague since 1827)

Probabilistic distributions Relative frequency

Czech Technical University in Prague, Klokner Institute Evaluation of discharges

- Parameters alternatively estimated by the *maximum-likelihood method*
- Estimates of the *mean* independent of the applied method
- Estimates by the *maximum likelihood* method *increased*:
 standard deviation by about 10 %
 - characteristic value ($\approx 3800 \text{ m}^3/\text{s}$) by about 8 %
 - design value ($\approx 11500 \text{ m}^3/\text{s}$) by about 16 %
- **Partial factor** $\gamma_Q \approx 3.0$

The discharge in 2002 corresponds to a considerably long return period of approximately 210 years.

- *Lack of robustness* seems to be a significant factor of structural failures due to snow and flooding.
- *Exposures* include:
 - extreme snow load and additional loadings,
 - transport of sediments and earth pressure.
- Low *resistance* may be caused by:
 - insufficient code provisions, errors in design and execution,
 - inadequate foundation and construction materials.
- *Reliability of light-weight roofs* exposed to a snow load may be rather *low* the partial factor γ_Q should be greater than 1.5.
- Extreme discharges predicted by the *maximum-likelihood method* are greater than those by the method of moments (by about 10 %).
- The *partial factor* $\gamma_Q = 1.5$ recommended in EN is considerably lower than the value derived from the data ($\gamma_Q \approx 3.0$).
- The *discharge* observed *in 2002* corresponds to an exceptionally *long return period* and could be hardly expected.

Milan Holicky, Miroslav Sykora

Models for exposure conditions – a review of available data for snow and flooding in the Czech Republic

Thank you for your attention.

