Robustness - Offshore Wind Energy Converters

Sebastian Thöns

Risk and Safety, Institute of Structural Engineering (IBK) ETH Zurich Division VII.2: Buildings and Structures Federal Institute for Materials Research and Testing, Berlin

Michael H. Faber

Risk and Safety, Institute of Structural Engineering (IBK) ETH Zurich

Werner Rücker

Division VII.2: Buildings and Structures Federal Institute for Materials Research and Testing, Berlin

Research Project IMO-WIND German Federal Institute for Materials Research and Testing (BAM)

- Development of an integrated monitoring and assessment system for the components structure, rotor blades and machine of Offshore Wind Energy Converters
- Development and application of new methods for data analysis and early damage detection
- Investigations of the damage behaviour and long-term performance of rotor blades
- Investigations and tests for application of new sensors technologies (fibre optical systems, piezo-sensors) aiming at long-term monitoring

Assessment of Offshore Wind Energy Converters

Aims:

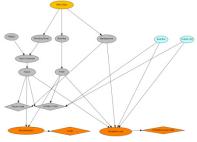
- Online condition information
- Maintenance / repair planning support

Challenges:

- Development of overall assessment methods for the integrated system
- Development of quantitative criteria for assessment of the structure
- Design of a monitoring concept for the structure
- Integration of monitoring data in the assessment

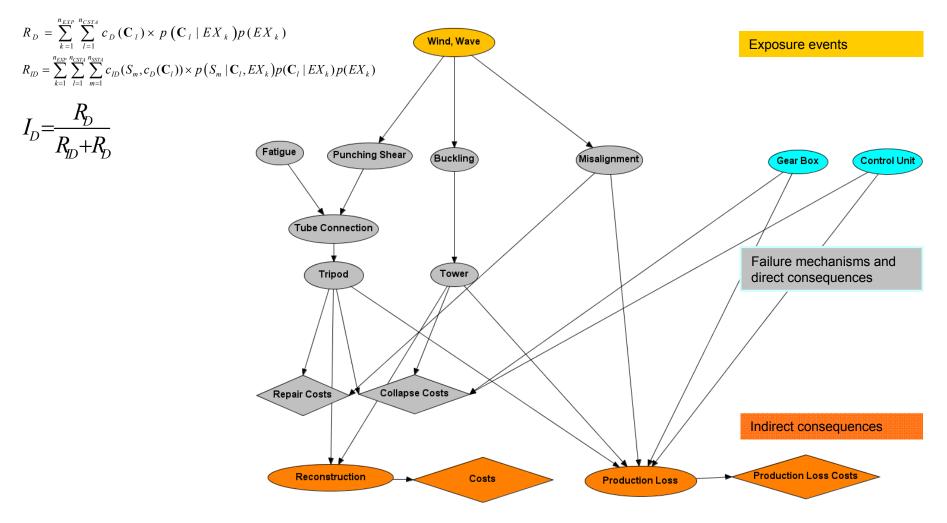
Multibrid M5000

General Approach


- Risk Analysis
 - Scenario definition and simulation
 - Barries and consequence
 - Deterioration processes
 - Gross errors
 - Actions
- Assessment criteria: robustness and structural reliability
- Simulation of sensor-signals
- Field-testing of sensors on prototypes of offshore wind energy converters

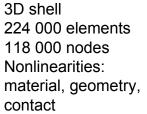
Multibrid M5000, Bremerhaven

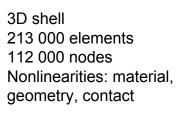
Approach: Methods


- Bayesian network
 - Analysis of the overall structural reliability and robustness
 - Incorporation of consequence modelling
 - Integration of the components rotor and machine into the assessment framework

- Finite-Element-Method and Response Surfaces
 - Simulation of structural reliability for each failure mechanism
 - Simulation of sensor signals

Approach: Example for a Bayesian Network for Analysis of Robustness




Fatigue Limit State

Approach: Structural Reliability with Stochastic Finite Element Simulations

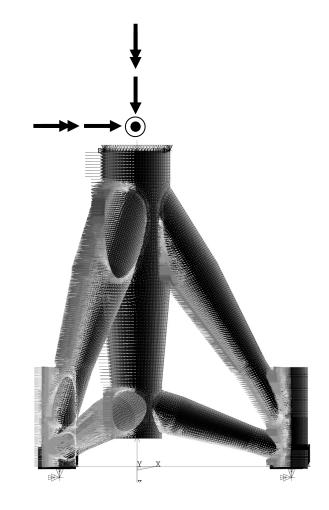
Ultimate Limit State

3D solid 342 000 elements 1 700 000 nodes Nonlinearities: contact

3D shell 16 000 elements 52 000 nodes Linear

Structural Reliability: Example for Ultimate Limit State Analysis

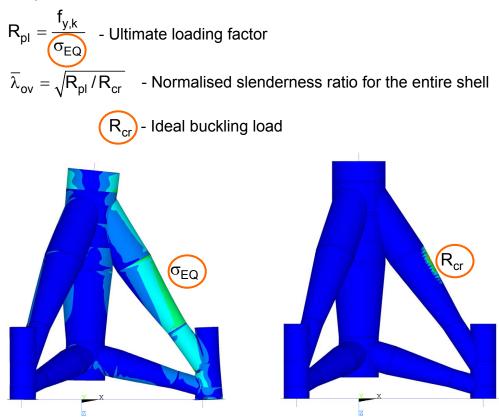
Loading:

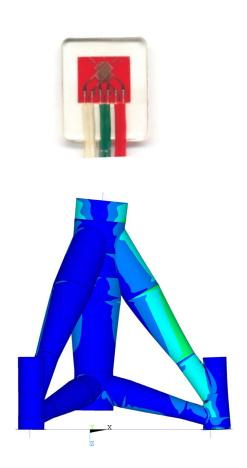

Nacelle / Tower loading based on an overall dynamic analysis Envelope of ultimate loading

Simulation:

Static simulation Load case and eigenvalue extraction using Block Lanczocs method

Random variables:

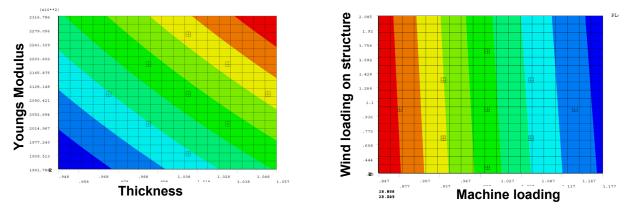

Imperfections Material thickness Wind pressure Nacelle / tower loading Youngs modulus Yield stress


Structural Reliability: Example for Ultimate Limit State Analysis Application of Response Surfaces

Buckling limit state function for a LA/GNA analyses (Eurocode 3-1-6 (2002)):

 $g = \chi_{ov}R_{pl} - \Delta$ with the buckling reduction factor for entire shell $\chi_{ov} = f(\overline{\lambda})$

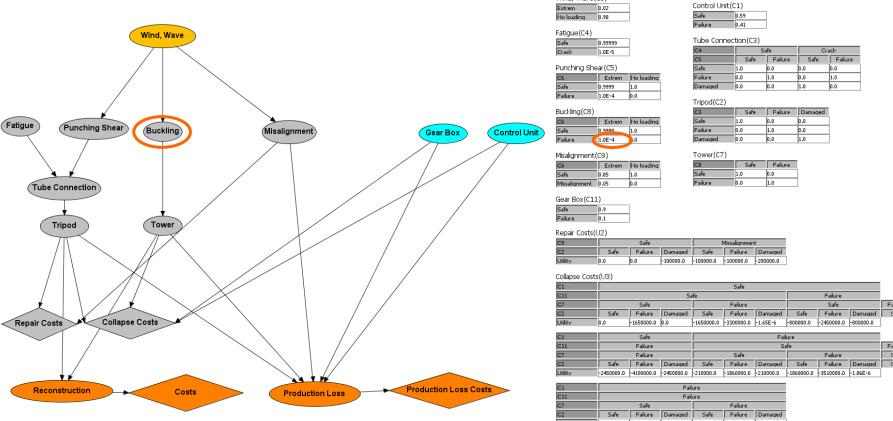
Simulation of sensor data:



Structural Reliability: Example for Ultimate Limit State Analysis Application of Response Surfaces

Design of experiments for response surface:

- Fractional central composite design
- Resolution V design
- 27 simulations for 5 random variables


Response surfaces for parameter ideal buckling load R_{cr}

Limit state function for buckling: $g = \chi_{ov}R_{pl} - \Delta$

Calculation of **failure probability** with Monte Carlo using Response Surfaces. Calculation of **sensor data** with Monte Carlo using Response Surfaces. **Result** for failure mechanism buckling: Very low probability of failure.

Structural Reliability: Example for Ultimate Limit State Analysis **Integration of Failure Probability in Bayesian Network**

Utility -1010000.0 -2660000.0 -1010000.0 -2660000.0 -4310000.0 -2660000.0

0.59

0.41

1.0

0.0

Safe

1.0

0.0

1.0

Missalignment

Safe

Failure

Safe

Failure

Safe

Safe Failure

0.0

1.0

0.0

1.0

0.0

0.0

Failure

Safe

11 - 14

Crack

Failure

0.0

1.0

0.0

Failure

Safe

Failure

E

Safe

0.0

0.0

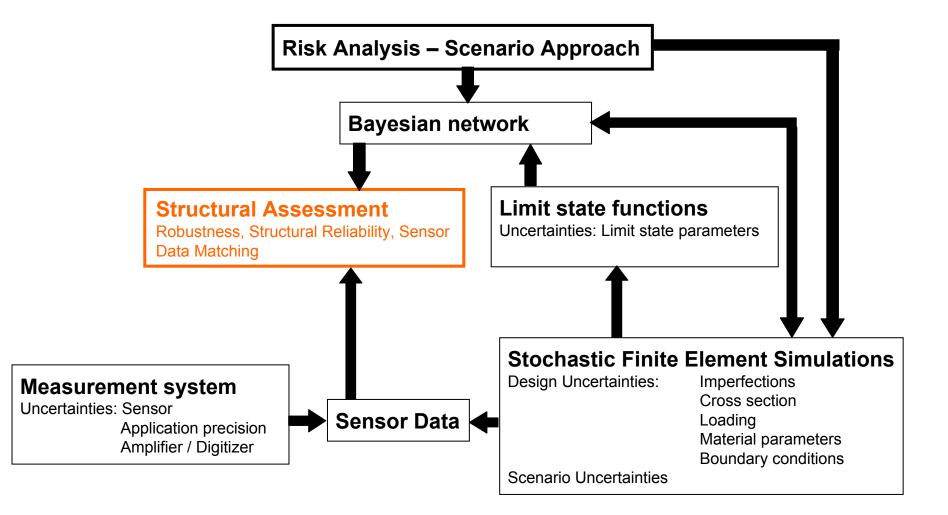
1.0

0.0

0.0

1.0

Failure Damaged


Reconstruction(C12)

Wind, Wave(C6)

C7	Safe			Failure		
C2	Safe	Failure	Damaged	Safe	Failure	Damaged
No Reconstruct	1.0	0.0	0.99	0.0	0.0	0.0
Reconstruction	0.0	1.0	0.01	1.0	1.0	1.0

Costs(U3_1)

C12	No Reco	nst Reconstruc
Utility	0.0	-7500000.0

Conclusions

Framework for assessment analysing robustness and structural reliability developed

- Development of overall assessment methods for the integrated system
 - Bayesian network
 - Integration of different components of wind energy converter
- Development of quantitative criteria for assessment of the structure
 - Robustness and structural reliability
- Design of a monitoring concept for the structure
- Integration of monitoring data in the assessment
 - Sensor signal simulation
 - Correlation with limit state function

Outlook

- Refine scenario definition and probabilistic models
- Fatigue limit state
- Probabilistic model for sensor data data matching
- Work on all levels!

Thank you for your Attention!